Оптические коннекторы
Оптические коннекторы применяются при оконцовке оптических волокон для их стыковки с пассивным или активным телекоммуникационным оборудованием.
Сегодня на рынке представлено большое количество специализированных оптических коннекторов. В телекоммуникациях и сетях кабельного телевидения наибольшее распространение получили коннекторы типов SC, FC, ST, имеющие стандартные размеры и миниатюрные LC. Оптические коннекторы могут соединять как одно, так и несколько волокон.
Оптический коннектор состоит из корпуса, внутри которого расположен наконечник (ферул) с прецизионным продольным концентрическим каналом. Диаметр канала зависит от того, какое оптическое волокно будет использоваться — одномодовое или многомодовое. Для одномодового волокна диаметр канала ферула равен 125,5-127 мкм, для многомодового 127-130 мкм. Наиболее распространенный внешний диаметр ферула — 2,5 мм, но в оптических коннекторах с малым форм-фактором используются ферулы диаметром 1,25 мм. Стандартно в качестве материала ферула используется диоксид циркония.
Ферул соединяется с оптическим волокном — волокно без оболочки вставляется в канал наконечника и фиксируется, выступающий конец волокна скалывается параллельно с поверхностью торца ферула, сам торец ферула полируется. Далее ферул с волокном совмещается с корпусом разъема. После соединения волокна и ферула, сборка тестируется на наличие дефектов (на микроскопе или интерферометре). Для одномодового волокна точность выравнивания волокна в феруле должна быть выше, чем 0,5 мкм, угловое отклонение не более 5°, а возвратные потери не менее 40 дБ.
Несколько типов коннекторов используются наиболее часто. Каждый из типов требует своего метода сборки, но два этапа процесса сборки являются общими для всех типов коннекторов.
- Волокно закрепляется в оптическом коннекторе с помощью эпоксидной смолы. Этот процесс важен с точки зрения обеспечения надежности соединения. Эпоксидная смола предотвращает движение оптического волокна, что позволяет производить равномерную полировку торцов ферулы и оптического волокна.
- Торец ферулы полируется для обеспечения наиболее плотного соединения коннекторов. Это необходимо для того, чтобы снизить в точке соединения коннекторов вносимое в линию затухание и обратное отражение.
Типы полировок
- РС (Physically Contact)
- UPC (Ultra Physically Contact)
- APC (Angled Physically Contact)
- SPC (Super Physically Contact)
В случае полировки UPC плоскость торца ферулы перпендикулярна оптическому волноводу волокна, при типе полировки APC — наклонена под углом 8° (Рис.2).
В телекоммуникациях стандартно используются оптические коннекторы с полировкой UPC, обозначаемые синим цветом, реже — APC, обозначаемые зеленым цветом. Оптические коннекторы с полировкой APC не совместимы с другими типами коннекторов, они нашли широкое применение в сетях кабельного телевидения.
Выбор метода полировки зависит от материала наконечника. Если материал наконечника очень твердый, например, керамика, то, как правило, наконечник закруглен в районе торцевого конца, и на него ссылаются как на предварительно закругленный. Мягкие материалы наконечника, такие, как композитные термопластики или стеклокерамика, могут полироваться плоско. Эти материалы интенсивно используются, так как изнашиваются примерно с такой же скоростью, что и оптоволокно, и поддерживают высокое качество физического контакта.
Торцевые концы волокна закругляются, для того, чтобы свет не отражался непосредственно назад к источнику (угол отражения равен углу падения). В случае закругления торца, отражение происходит назад под углом и рассеивается, а волокна соприкасаются наиболее выступающими точками, приходящимися на среднюю часть светонесущей сердцевины волокна. Таким образом, воздушный зазор исключен.
Обратное отражение может быть снижено еще больше, если использовать угловой физический контакт APC (Angled Physically Contact). Угловой контакт отражает свет в оболочку волокна, а не в сердцевину. Возвратные потери оптического коннектора должны быть, как уже говорилось, не меньше 40 дБ.
Еще одна важная характеристика оптического коннектора — количество циклов соединения. Оно определяется числом соединений/разъединений, начиная с которого характеристики коннектора начнут ухудшаться. Это число, как показывает опыт, колеблется от 200 до 600 соединений. В конце жизненного цикла потери на коннекторе не должны увеличиваться более чем на 0,2 дБ.
Требования, предъявляемые к коннекторам:
- Малые вносимые потери
- Малое обратное отражение
- Устойчивость к внешним механическим, климатическим и другим воздействиям
- Высокая надежность и простота конструкции, незначительное ухудшение параметров после многократных повторных соединений
Типы оптических коннекторов
ST-коннектор
Коннекторы ST были разработаны в середине 80-х годов. Удачная конструкция этих коннекторов обусловила появление на рынке большого числа их аналогов. В настоящее время коннекторы ST получили широкое распространение в оптических подсистемах локальных сетей. Керамический наконечник диаметром 2,5 мм, с выпуклой торцевой поверхностью диаметром 2 мм обеспечивает физический контакт стыкуемых световодов. Для защиты торца волокна от повреждений при прокручивании в момент установки применяется боковой ключ, входящий в паз розетки, вилка на розетке фиксируется байонетным замком.
Коннекторы ST просты и надежны в эксплуатации, легко устанавливаются и относительно бюджетны. Однако, простота конструкции имеет и отрицательные стороны: чувствительность к резким усилиям, прилагаемым к кабелю, а также к значительным вибрационным и ударным нагрузкам, ведь наконечник представляет собой единый узел с корпусом и хвостовиком. Этот недостаток ограничивает применение подобного типа коннекторов на подвижных объектах. Детали коннекторов ST обычно изготавливаются из цинкового сплава с никелированием, реже из пластмассы.
При сборке коннекторов арамидные нити упрочняющей оплетки кабеля укладываются на поверхность задней части корпуса, после чего надвигается и обжимается металлическая гильза. Такая конструкция позволяет в значительной мере снизить вероятность обрыва волокна при выдергивании коннектора. Для дополнительного увеличения механической прочности соединительных шнуров в коннекторах ряда производителей предусматривается обжим на задней части корпуса не только арамидных нитей, но и внешней оболочки миникабеля.
В настоящее время ST-коннектор заменяется на более прогрессивный FC-коннектор.
SC-коннектор
Данный тип коннектора широко применяется как для одномодового, так и для многомодового волокна. SC-коннектор относится к классу коннекторов общего пользования и применяется как в сетях с большой длиной секций, так и в локальных сетях. В устройстве используется механизм сочленения «push-pull».
Коннектор SC базового типа состоит из сборки (вилки), содержащей наконечник, вставленной в корпус разъема, центрирующую наконечник. Оптический SC-коннектор может быть объединен в модуль, состоящий из нескольких разъемов. В этом случае для дуплексного соединения используется одно волокно для передачи в прямом направлении, а другое волокно в обратном. Коннектор имеет ключ, предотвращающий неправильное соединение волокон.
FC-коннектор
Коннекторы типа FC ориентированы, в основном, на применение в одномодовых линиях дальней связи, специализированных системах и сетях кабельного телевидения. Керамический наконечник диаметром 2,5 мм с выпуклой торцевой поверхностью диаметром 2 мм обеспечивает физический контакт стыкуемых световодов. Наконечник изготавливается со строгими допусками на геометрические параметры, что гарантирует низкий уровень потерь и минимум обратных отражений. Для фиксации коннектора FC на розетке используется накидная гайка с резьбой М8 х 0,75. В данной конструкции подпружиненный наконечник жестко не связан с корпусом и хвостовиком, что усложняет и удорожает коннектор, однако такое дополнение окупается повышенной надежностью.
Уровень вносимых потерь коннектора типа FC составляет <0,4 дБ. Они имеют средства для настройки. Ключ настройки позволяет настраивать уровень вносимых потерь до нескольких десятых дБ. После того, как позиция минимальных потерь найдена, ключ может быть зафиксирован.
Коннекторы типа FC устойчивы к воздействию вибраций и ударов, что позволяет применять их на соответствующих сетях, например, непосредственно на подвижных объектах, а также на сооружениях, расположенных вблизи железных дорог.
LC-коннектор
Миниатюрные LC-коннекторы имеют размеры примерно в два раза меньше, чем обычные варианты SC, FC, ST с диаметром наконечника 1,25 мм, вместо стандартного 2,5 мм. Это позволяет реализовать большую плотность при установке на коммутационной панели и плотную схему установки в стойку.
Коннектор фиксируется с помощью прижимного механизма, исключающего случайное разъединение.
D4-коннектор
Этот тип оптических коннекторов особенно широко используется для одномодового волокна. Он во многих отношениях похож на FC-коннектор, но имеет наконечник меньшего диаметра — 2,0 мм.
FDDI-коннектор
Разъем FDDI спроектирован как двухканальный, использует два керамических наконечника и механизм боковых защелок. Прочный кожух защищает наконечники от случайных повреждений, тогда как плавающий стык обеспечивает ему плотное сочленение без усилий. Уровень вносимых потерь составляет порядка 0,3 дБ для одномодового волокна и порядка 0,5 дБ для многомодового. FDDI — технология локальных сетей, используемая для пакетной передачи данных со скоростью 100 Мбит/с в соответствии со стандартом ANSI.
Оптический разъем Е-2000 и F-3000
Разъемы Е-2000 представляют из себя достаточно сложную конструкцию. Для разъединения разъема требуется специальный ключ, поэтому вероятность случайного разъединения разъема Е-2000 сводится к нулю. После разъединения коннектора, отверстие закрывают специальные шторки. Данные разъемы отличает большое количество циклов соединений — до 2000.
Оптические разъемы F-3000 являются усовершенствованной версией разъема Е-2000. Отличие заключается в диаметре ферула — 1,25 мм (у F-3000) и в материале шторок, у F-3000 они металлические.Существует еще большое количество типов оптических разъемов — HDSC, FJ, SC-Compact, MU, SCDC, SCQC, Mini-MT, MT-RJ, Mini-MPO, Optoclip II, VF-45 и прочие. Эти разъемы имеют узкое прикладное назначение и в настоящее время не получили широкого применения.